\(\int \frac {\cos ^3(c+d x) \cot (c+d x)}{(a+b \sin (c+d x))^{5/2}} \, dx\) [1186]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [F(-1)]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F(-1)]
   Mupad [F(-1)]

Optimal result

Integrand size = 29, antiderivative size = 313 \[ \int \frac {\cos ^3(c+d x) \cot (c+d x)}{(a+b \sin (c+d x))^{5/2}} \, dx=-\frac {2 \left (a^2-b^2\right ) \cos (c+d x)}{3 a b^2 d (a+b \sin (c+d x))^{3/2}}+\frac {2 \left (5 a^2+3 b^2\right ) \cos (c+d x)}{3 a^2 b^2 d \sqrt {a+b \sin (c+d x)}}+\frac {2 \left (8 a^2+3 b^2\right ) E\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )|\frac {2 b}{a+b}\right ) \sqrt {a+b \sin (c+d x)}}{3 a^2 b^3 d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}-\frac {2 \left (8 a^2+b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}{3 a b^3 d \sqrt {a+b \sin (c+d x)}}+\frac {2 \operatorname {EllipticPi}\left (2,\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}{a^2 d \sqrt {a+b \sin (c+d x)}} \]

[Out]

-2/3*(a^2-b^2)*cos(d*x+c)/a/b^2/d/(a+b*sin(d*x+c))^(3/2)+2/3*(5*a^2+3*b^2)*cos(d*x+c)/a^2/b^2/d/(a+b*sin(d*x+c
))^(1/2)-2/3*(8*a^2+3*b^2)*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticE(cos(1/2*c+1
/4*Pi+1/2*d*x),2^(1/2)*(b/(a+b))^(1/2))*(a+b*sin(d*x+c))^(1/2)/a^2/b^3/d/((a+b*sin(d*x+c))/(a+b))^(1/2)+2/3*(8
*a^2+b^2)*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticF(cos(1/2*c+1/4*Pi+1/2*d*x),2^
(1/2)*(b/(a+b))^(1/2))*((a+b*sin(d*x+c))/(a+b))^(1/2)/a/b^3/d/(a+b*sin(d*x+c))^(1/2)-2*(sin(1/2*c+1/4*Pi+1/2*d
*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticPi(cos(1/2*c+1/4*Pi+1/2*d*x),2,2^(1/2)*(b/(a+b))^(1/2))*((a+b*s
in(d*x+c))/(a+b))^(1/2)/a^2/d/(a+b*sin(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.47 (sec) , antiderivative size = 313, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.310, Rules used = {2970, 3138, 2734, 2732, 3081, 2742, 2740, 2886, 2884} \[ \int \frac {\cos ^3(c+d x) \cot (c+d x)}{(a+b \sin (c+d x))^{5/2}} \, dx=\frac {2 \left (5 a^2+3 b^2\right ) \cos (c+d x)}{3 a^2 b^2 d \sqrt {a+b \sin (c+d x)}}-\frac {2 \left (a^2-b^2\right ) \cos (c+d x)}{3 a b^2 d (a+b \sin (c+d x))^{3/2}}-\frac {2 \left (8 a^2+b^2\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right ),\frac {2 b}{a+b}\right )}{3 a b^3 d \sqrt {a+b \sin (c+d x)}}+\frac {2 \left (8 a^2+3 b^2\right ) \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{3 a^2 b^3 d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}+\frac {2 \sqrt {\frac {a+b \sin (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right ),\frac {2 b}{a+b}\right )}{a^2 d \sqrt {a+b \sin (c+d x)}} \]

[In]

Int[(Cos[c + d*x]^3*Cot[c + d*x])/(a + b*Sin[c + d*x])^(5/2),x]

[Out]

(-2*(a^2 - b^2)*Cos[c + d*x])/(3*a*b^2*d*(a + b*Sin[c + d*x])^(3/2)) + (2*(5*a^2 + 3*b^2)*Cos[c + d*x])/(3*a^2
*b^2*d*Sqrt[a + b*Sin[c + d*x]]) + (2*(8*a^2 + 3*b^2)*EllipticE[(c - Pi/2 + d*x)/2, (2*b)/(a + b)]*Sqrt[a + b*
Sin[c + d*x]])/(3*a^2*b^3*d*Sqrt[(a + b*Sin[c + d*x])/(a + b)]) - (2*(8*a^2 + b^2)*EllipticF[(c - Pi/2 + d*x)/
2, (2*b)/(a + b)]*Sqrt[(a + b*Sin[c + d*x])/(a + b)])/(3*a*b^3*d*Sqrt[a + b*Sin[c + d*x]]) + (2*EllipticPi[2,
(c - Pi/2 + d*x)/2, (2*b)/(a + b)]*Sqrt[(a + b*Sin[c + d*x])/(a + b)])/(a^2*d*Sqrt[a + b*Sin[c + d*x]])

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2886

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/
(c + d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 2970

Int[cos[(e_.) + (f_.)*(x_)]^4*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)
, x_Symbol] :> Simp[(a^2 - b^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((d*Sin[e + f*x])^(n + 1)/(a*b^2*d*f
*(m + 1))), x] + (-Dist[1/(a^2*b^2*(m + 1)*(m + 2)), Int[(a + b*Sin[e + f*x])^(m + 2)*(d*Sin[e + f*x])^n*Simp[
a^2*(n + 1)*(n + 3) - b^2*(m + n + 2)*(m + n + 3) + a*b*(m + 2)*Sin[e + f*x] - (a^2*(n + 2)*(n + 3) - b^2*(m +
 n + 2)*(m + n + 4))*Sin[e + f*x]^2, x], x], x] + Simp[(a^2*(n - m + 1) - b^2*(m + n + 2))*Cos[e + f*x]*(a + b
*Sin[e + f*x])^(m + 2)*((d*Sin[e + f*x])^(n + 1)/(a^2*b^2*d*f*(m + 1)*(m + 2))), x]) /; FreeQ[{a, b, d, e, f,
n}, x] && NeQ[a^2 - b^2, 0] && IntegersQ[2*m, 2*n] && LtQ[m, -1] &&  !LtQ[n, -1] && (LtQ[m, -2] || EqQ[m + n +
 4, 0])

Rule 3081

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3138

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 \left (a^2-b^2\right ) \cos (c+d x)}{3 a b^2 d (a+b \sin (c+d x))^{3/2}}+\frac {2 \left (5 a^2+3 b^2\right ) \cos (c+d x)}{3 a^2 b^2 d \sqrt {a+b \sin (c+d x)}}-\frac {4 \int \frac {\csc (c+d x) \left (-\frac {3 b^2}{4}-\frac {1}{2} a b \sin (c+d x)-\frac {1}{4} \left (8 a^2+3 b^2\right ) \sin ^2(c+d x)\right )}{\sqrt {a+b \sin (c+d x)}} \, dx}{3 a^2 b^2} \\ & = -\frac {2 \left (a^2-b^2\right ) \cos (c+d x)}{3 a b^2 d (a+b \sin (c+d x))^{3/2}}+\frac {2 \left (5 a^2+3 b^2\right ) \cos (c+d x)}{3 a^2 b^2 d \sqrt {a+b \sin (c+d x)}}+\frac {4 \int \frac {\csc (c+d x) \left (\frac {3 b^3}{4}-\frac {1}{4} a \left (8 a^2+b^2\right ) \sin (c+d x)\right )}{\sqrt {a+b \sin (c+d x)}} \, dx}{3 a^2 b^3}-\frac {\left (-8 a^2-3 b^2\right ) \int \sqrt {a+b \sin (c+d x)} \, dx}{3 a^2 b^3} \\ & = -\frac {2 \left (a^2-b^2\right ) \cos (c+d x)}{3 a b^2 d (a+b \sin (c+d x))^{3/2}}+\frac {2 \left (5 a^2+3 b^2\right ) \cos (c+d x)}{3 a^2 b^2 d \sqrt {a+b \sin (c+d x)}}+\frac {\int \frac {\csc (c+d x)}{\sqrt {a+b \sin (c+d x)}} \, dx}{a^2}-\frac {\left (8 a^2+b^2\right ) \int \frac {1}{\sqrt {a+b \sin (c+d x)}} \, dx}{3 a b^3}-\frac {\left (\left (-8 a^2-3 b^2\right ) \sqrt {a+b \sin (c+d x)}\right ) \int \sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}} \, dx}{3 a^2 b^3 \sqrt {\frac {a+b \sin (c+d x)}{a+b}}} \\ & = -\frac {2 \left (a^2-b^2\right ) \cos (c+d x)}{3 a b^2 d (a+b \sin (c+d x))^{3/2}}+\frac {2 \left (5 a^2+3 b^2\right ) \cos (c+d x)}{3 a^2 b^2 d \sqrt {a+b \sin (c+d x)}}+\frac {2 \left (8 a^2+3 b^2\right ) E\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )|\frac {2 b}{a+b}\right ) \sqrt {a+b \sin (c+d x)}}{3 a^2 b^3 d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}+\frac {\sqrt {\frac {a+b \sin (c+d x)}{a+b}} \int \frac {\csc (c+d x)}{\sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}}} \, dx}{a^2 \sqrt {a+b \sin (c+d x)}}-\frac {\left (\left (8 a^2+b^2\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}}} \, dx}{3 a b^3 \sqrt {a+b \sin (c+d x)}} \\ & = -\frac {2 \left (a^2-b^2\right ) \cos (c+d x)}{3 a b^2 d (a+b \sin (c+d x))^{3/2}}+\frac {2 \left (5 a^2+3 b^2\right ) \cos (c+d x)}{3 a^2 b^2 d \sqrt {a+b \sin (c+d x)}}+\frac {2 \left (8 a^2+3 b^2\right ) E\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )|\frac {2 b}{a+b}\right ) \sqrt {a+b \sin (c+d x)}}{3 a^2 b^3 d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}-\frac {2 \left (8 a^2+b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}{3 a b^3 d \sqrt {a+b \sin (c+d x)}}+\frac {2 \operatorname {EllipticPi}\left (2,\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}{a^2 d \sqrt {a+b \sin (c+d x)}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 3.70 (sec) , antiderivative size = 443, normalized size of antiderivative = 1.42 \[ \int \frac {\cos ^3(c+d x) \cot (c+d x)}{(a+b \sin (c+d x))^{5/2}} \, dx=-\frac {\frac {i \left (8 a^2+3 b^2\right ) \left (-2 a (a-b) E\left (i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \sin (c+d x)}\right )|\frac {a+b}{a-b}\right )+b \left (-2 a \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \sin (c+d x)}\right ),\frac {a+b}{a-b}\right )+b \operatorname {EllipticPi}\left (\frac {a+b}{a},i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \sin (c+d x)}\right ),\frac {a+b}{a-b}\right )\right )\right ) \sec (c+d x) \sqrt {-\frac {b (-1+\sin (c+d x))}{a+b}} \sqrt {\frac {b (1+\sin (c+d x))}{-a+b}}}{b^2 \sqrt {-\frac {1}{a+b}}}+\frac {2 a^2 \left (a^2-b^2\right ) \cos (c+d x)}{(a+b \sin (c+d x))^{3/2}}-\frac {2 a \left (5 a^2+3 b^2\right ) \cos (c+d x)}{\sqrt {a+b \sin (c+d x)}}+\frac {4 a^2 b \operatorname {EllipticF}\left (\frac {1}{4} (-2 c+\pi -2 d x),\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}{\sqrt {a+b \sin (c+d x)}}+\frac {a \left (8 a^2+9 b^2\right ) \operatorname {EllipticPi}\left (2,\frac {1}{4} (-2 c+\pi -2 d x),\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}{\sqrt {a+b \sin (c+d x)}}}{3 a^3 b^2 d} \]

[In]

Integrate[(Cos[c + d*x]^3*Cot[c + d*x])/(a + b*Sin[c + d*x])^(5/2),x]

[Out]

-1/3*((I*(8*a^2 + 3*b^2)*(-2*a*(a - b)*EllipticE[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Sin[c + d*x]]], (a +
 b)/(a - b)] + b*(-2*a*EllipticF[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Sin[c + d*x]]], (a + b)/(a - b)] + b
*EllipticPi[(a + b)/a, I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Sin[c + d*x]]], (a + b)/(a - b)]))*Sec[c + d*x
]*Sqrt[-((b*(-1 + Sin[c + d*x]))/(a + b))]*Sqrt[(b*(1 + Sin[c + d*x]))/(-a + b)])/(b^2*Sqrt[-(a + b)^(-1)]) +
(2*a^2*(a^2 - b^2)*Cos[c + d*x])/(a + b*Sin[c + d*x])^(3/2) - (2*a*(5*a^2 + 3*b^2)*Cos[c + d*x])/Sqrt[a + b*Si
n[c + d*x]] + (4*a^2*b*EllipticF[(-2*c + Pi - 2*d*x)/4, (2*b)/(a + b)]*Sqrt[(a + b*Sin[c + d*x])/(a + b)])/Sqr
t[a + b*Sin[c + d*x]] + (a*(8*a^2 + 9*b^2)*EllipticPi[2, (-2*c + Pi - 2*d*x)/4, (2*b)/(a + b)]*Sqrt[(a + b*Sin
[c + d*x])/(a + b)])/Sqrt[a + b*Sin[c + d*x]])/(a^3*b^2*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1374\) vs. \(2(388)=776\).

Time = 2.12 (sec) , antiderivative size = 1375, normalized size of antiderivative = 4.39

method result size
default \(\text {Expression too large to display}\) \(1375\)

[In]

int(cos(d*x+c)^3*cot(d*x+c)/(a+b*sin(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

(-(-b*sin(d*x+c)-a)*cos(d*x+c)^2)^(1/2)*(-2/a^3*(1/b*a-1)*((a+b*sin(d*x+c))/(a-b))^(1/2)*((1-sin(d*x+c))*b/(a+
b))^(1/2)*((-1-sin(d*x+c))*b/(a-b))^(1/2)/(-(-b*sin(d*x+c)-a)*cos(d*x+c)^2)^(1/2)*b*EllipticPi(((a+b*sin(d*x+c
))/(a-b))^(1/2),-(-1/b*a+1)*b/a,((a-b)/(a+b))^(1/2))+1/b^3*(-4*a*(1/b*a-1)*((a+b*sin(d*x+c))/(a-b))^(1/2)*((1-
sin(d*x+c))*b/(a+b))^(1/2)*((-1-sin(d*x+c))*b/(a-b))^(1/2)/(-(-b*sin(d*x+c)-a)*cos(d*x+c)^2)^(1/2)*EllipticF((
(a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))+2*b*(1/b*a-1)*((a+b*sin(d*x+c))/(a-b))^(1/2)*((1-sin(d*x+c)
)*b/(a+b))^(1/2)*((-1-sin(d*x+c))*b/(a-b))^(1/2)/(-(-b*sin(d*x+c)-a)*cos(d*x+c)^2)^(1/2)*((-1/b*a-1)*EllipticE
(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))+EllipticF(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1
/2))))+(-a^4+2*a^2*b^2-b^4)/a/b^3*(2/3/(a^2-b^2)/b*(-(-b*sin(d*x+c)-a)*cos(d*x+c)^2)^(1/2)/(sin(d*x+c)+1/b*a)^
2+8/3*b*cos(d*x+c)^2/(a^2-b^2)^2*a/(-(-b*sin(d*x+c)-a)*cos(d*x+c)^2)^(1/2)+2*(3*a^2+b^2)/(3*a^4-6*a^2*b^2+3*b^
4)*(1/b*a-1)*((a+b*sin(d*x+c))/(a-b))^(1/2)*((1-sin(d*x+c))*b/(a+b))^(1/2)*((-1-sin(d*x+c))*b/(a-b))^(1/2)/(-(
-b*sin(d*x+c)-a)*cos(d*x+c)^2)^(1/2)*EllipticF(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))+8/3*a*b/(a^
2-b^2)^2*(1/b*a-1)*((a+b*sin(d*x+c))/(a-b))^(1/2)*((1-sin(d*x+c))*b/(a+b))^(1/2)*((-1-sin(d*x+c))*b/(a-b))^(1/
2)/(-(-b*sin(d*x+c)-a)*cos(d*x+c)^2)^(1/2)*((-1/b*a-1)*EllipticE(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^
(1/2))+EllipticF(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))))+1/b^3*(3*a^4-2*a^2*b^2-b^4)/a^2*(2*b*co
s(d*x+c)^2/(a^2-b^2)/(-(-b*sin(d*x+c)-a)*cos(d*x+c)^2)^(1/2)+2*a/(a^2-b^2)*(1/b*a-1)*((a+b*sin(d*x+c))/(a-b))^
(1/2)*((1-sin(d*x+c))*b/(a+b))^(1/2)*((-1-sin(d*x+c))*b/(a-b))^(1/2)/(-(-b*sin(d*x+c)-a)*cos(d*x+c)^2)^(1/2)*E
llipticF(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))+2/(a^2-b^2)*b*(1/b*a-1)*((a+b*sin(d*x+c))/(a-b))^
(1/2)*((1-sin(d*x+c))*b/(a+b))^(1/2)*((-1-sin(d*x+c))*b/(a-b))^(1/2)/(-(-b*sin(d*x+c)-a)*cos(d*x+c)^2)^(1/2)*(
(-1/b*a-1)*EllipticE(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))+EllipticF(((a+b*sin(d*x+c))/(a-b))^(1
/2),((a-b)/(a+b))^(1/2)))))/cos(d*x+c)/(a+b*sin(d*x+c))^(1/2)/d

Fricas [F(-1)]

Timed out. \[ \int \frac {\cos ^3(c+d x) \cot (c+d x)}{(a+b \sin (c+d x))^{5/2}} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)^3*cot(d*x+c)/(a+b*sin(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

Timed out

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^3(c+d x) \cot (c+d x)}{(a+b \sin (c+d x))^{5/2}} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**3*cot(d*x+c)/(a+b*sin(d*x+c))**(5/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\cos ^3(c+d x) \cot (c+d x)}{(a+b \sin (c+d x))^{5/2}} \, dx=\int { \frac {\cos \left (d x + c\right )^{3} \cot \left (d x + c\right )}{{\left (b \sin \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(cos(d*x+c)^3*cot(d*x+c)/(a+b*sin(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^3*cot(d*x + c)/(b*sin(d*x + c) + a)^(5/2), x)

Giac [F(-1)]

Timed out. \[ \int \frac {\cos ^3(c+d x) \cot (c+d x)}{(a+b \sin (c+d x))^{5/2}} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)^3*cot(d*x+c)/(a+b*sin(d*x+c))^(5/2),x, algorithm="giac")

[Out]

Timed out

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^3(c+d x) \cot (c+d x)}{(a+b \sin (c+d x))^{5/2}} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^3\,\mathrm {cot}\left (c+d\,x\right )}{{\left (a+b\,\sin \left (c+d\,x\right )\right )}^{5/2}} \,d x \]

[In]

int((cos(c + d*x)^3*cot(c + d*x))/(a + b*sin(c + d*x))^(5/2),x)

[Out]

int((cos(c + d*x)^3*cot(c + d*x))/(a + b*sin(c + d*x))^(5/2), x)